Internet facility prividing Mathematics Editing Service.
Siamak kooshan
Siamak kooshan
siamakkooshan@iran.ir

Asciimath Editor

(Mozila firefox compatible)

Don't remove backticks, Type between backticks, Copy entire input text for target use



Examples

sum_(k=1)^n k = 1+2+ cdots +n=(n(n+1))/2

`sum_(k=1)^n k = 1+2+ cdots +n=(n(n+1))/2`

f(x) = sum_(n=0)^oo (f^((n))(a))/(n!)(x-a)^n

`f(x) = sum_(n=0)^oo (f^((n))(a))/(n!)(x-a)^n`

f(x) = sum_(i=1)^ni^3x

`f(x) = sum_(i=1)^ni^3x`

f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n

`f(x)=sum_(n=0)^oo(f^((n))(a))/(n!)(x-a)^n`

f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n

`f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(a)}{n!}(x-a)^n`

f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_n\ sin((npit)/L)

`f(t)=(a_0)/2 + sum_(n=1)^ooa_ncos((npit)/L)+sum_(n=1)^oo b_n\ sin((npit)/L)`

x^2+y_1+z_12^34

`x^2+y_1+z_12^34`

sin^-1(x)

`sin^-1(x)`

d/dxf(x) = lim_(h->0)(f(x+h)-f(x))/h

`d/dxf(x) = lim_(h->0)(f(x+h)-f(x))/h`

frac{d}{dx}f(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}

`frac{d}{dx}f(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}`

f(x) = {(1,if x=0), (0,if x>=0):}

`f(x) = {(1,if x=0), (0,if x>=0):}`

a//b

`a//b`

(a/b)/(c/d)

`(a/b)/(c/d)`

a/b/c/d

`a/b/c/d`

((a*b))/c

`((a*b))/c`

sqrt root3x

`sqrt root3x`

sqrt sqrt root3x

`sqrt sqrt root3x`

<< a,b >> and {:(x,y),(u,v):}

`<< a,b >> and {:(x,y),(u,v):}`

(a,b]={x in RR | a < x <= b}

`(a,b]={x in RR | a < x <= b}`

abc-123.45^-1.1

`abc-123.45^-1.1`

hat(ab) bar(xy) ulA vec v dotx ddot y

`hat(ab) bar(xy) ulA vec v dotx ddot y`

stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)

`stackrel"def"= or \stackrel{\Delta}{=}" "("or ":=)`

{::}_(\ 92)^238U

`{::}_(\ 92)^238U`

[(1,2,3),(4,8,3),(-5,4,9)]

`[(1,2,3),(4,8,3),(-5,4,9)]`

[[a,b],[c,d]]((n),(k))

`[[a,b],[c,d]]((n),(k))`

[[a,b,|,c],[d,e,|,f]]

`[[a,b,|,c],[d,e,|,f]]`

[[a,b],[c,d]]((n),(k))

`[[a,b],[c,d]]((n),(k))`

((a,b),(c,d))^-1 = 1/(ad-bc)((d,-b),(-c,a))

`((a,b),(c,d))^-1 = 1/(ad-bc)((d,-b),(-c,a))`

((a_(11), cdots , a_(1n)),(vdots, ddots, vdots),(a_(m1), cdots , a_(mn)))

`((a_(11), cdots , a_(1n)),(vdots, ddots, vdots),(a_(m1), cdots , a_(mn)))`

{(2x,+,17y,=,23),(x,-,y,=,5):}

`{(2x,+,17y,=,23),(x,-,y,=,5):}`

A = pi r^2

`A = pi r^2`

a^2 + b^2 = c^2

`a^2 + b^2 = c^2`

int_0^1 x^2 dx

`int_0^1 x^2 dx`

int_0^1f(x)dx

`int_0^1f(x)dx`

int_-1^1 sqrt(1-x^2)dx = pi/2

`int_-1^1 sqrt(1-x^2)dx = pi/2`

int_(0)^(2 pi) sin\ x\ dx = 0

`int_(0)^(2 pi) sin\ x\ dx = 0`

x^2+y_1+z_12^34

`x^2+y_1+z_12^34`

x/x={(1,if x!=0),(text{undefined},if x=0):}

`x/x={(1,if x!=0),(text{undefined},if x=0):}`

(CH_3H_4O_2)_n

`(CH_3H_4O_2)_n`

P_4O_10 + H_2O rarr H_3PO_4

`P_4O_10 + H_2O rarr H_3PO_4 `

2Na + 2H_2O -> 2NaOH + H_2O

`2Na + 2H_2O -> 2NaOH + H_2O`

NH_4^+(aq) + NO_2^- " "rarr N_2(g) + 2H_2O(l)

`NH_4^+(aq) + NO_2^- " "rarr N_2(g) + 2H_2O(l)`

P=E/T=1/2muomega^2A^2lambdaf=1/2muomega^2A^2upsilon

`P=E/T=1/2muomega^2A^2lambdaf=1/2muomega^2A^2upsilon`

DeltaF_y=Ttan(theta_2) - Ttan(theta_1)=T(tan(theta_2) - tan(theta_1))=muDeltax_y

`DeltaF_y=Ttan(theta_2) - Ttan(theta_1)=T(tan(theta_2) - tan(theta_1))=muDeltax_y`

upsilon_b=sqrt{(2g(H-h))/(1-(a/lambda)^2}

`upsilon_b=sqrt{(2g(H-h))/(1-(a/lambda)^2}`

intdv_x=int(m_2 - m_1)/(m_1 + m_2) g t + C

`intdv_x=int(m_2 - m_1)/(m_1 + m_2) g t + C`

``




ASCIIMath Symbol List

Operation symbols

TypeSee
+`+`
-`-`
*`*`
**`**`
//`//`
\\`\\ `
xx`xx`
-:`-:`
@`@`
o+`o+`
ox`ox`
o.`o.`
sum`sum`
prod`prod`
^^`^^`
^^^`^^^`
vv`vv`
vvv`vvv`
nn`nn`
nnn`nnn`
uu`uu`
uuu`uuu`

Relation symbols

TypeSee
=`=`
!=`!=`
< `<`
>`>`
<=`<=`
>=`>=`
-<`-<`
>-`>-`
in`in`
!in`notin`
sub`sub`
sup`sup`
sube`sube`
supe`supe`
-=`-=`
~=`~=`
~~`~~`
prop`prop`

Logical symbols

TypeSee
and`and`
or`or`
not`not`
=>`=>`
if`if`
iff`iff`
AA`AA`
EE`EE`
_|_`_|_`
TT`TT`
|--`|--`
|==`|==`

Grouping brackets

TypeSee
(`(`
)`)`
[`[`
]`]`
{`{`
}`}`
(:`(:`
:)`:)`
{:`{:`
:}`{::}`

Miscellaneous symbols

TypeSee
int`int`
oint`oint`
del`del`
grad`grad`
+-`+-`
O/`O/`
oo`oo`
aleph`aleph`
/_`/_`
:.`:.`
|...||`...`|
|cdots||`cdots`|
vdots`vdots`
ddots`ddots`
|\ ||`\ `|
|quad||`quad`|
diamond`diamond`
square`square`
|__`|__`
__|`__|`
|~`|~`
~|`~|`
CC`CC`
NN`NN`
QQ`QQ`
RR`RR`
ZZ`ZZ`

Standard functions

TypeSee
sin`sin`
cos`cos`
tan`tan`
csc`csc`
sec`sec`
cot`cot`
sinh`sinh`
cosh`cosh`
tanh`tanh`
log`log`
ln`ln`
det`det`
dim`dim`
lim`lim`
mod`mod`
gcd`gcd`
lcm`lcm`
min`min`
max`max`

Accents

TypeSee
hat x`hat x`
bar x`bar x`
ul x`ul x`
vec x`vec x`
dot x`dot x`
ddot x`ddot x`

Arrows

TypeSee
uarr`uarr`
darr`darr`
rarr`rarr`
->`->`
|->`|->`
larr`larr`
harr`harr`
rArr`rArr`
lArr`lArr`
hArr`hArr`

Font commands

TypeSee
bb A`bb A`
bbb A`bbb A`
cc A`cc A`
tt A`tt A`
fr A`fr A`
sf A`sf A`


Lowercase Greek Letters


alpha `alpha`   beta `beta`   gamma `gamma`  delta `delta`  epsilon `epsilon`  varepsilon `varepsilon`   zeta `zeta`  eta `eta`  theta `theta`   vartheta `vartheta`  iota `iota`   kappa `kappa`  lambda `lambda`  mu `mu`  nu `nu`  xi `xi`  pi `pi`   rho `rho`  sigma `sigma`  tau `tau`  upsilon `upsilon`  phi `phi`  varphi `varphi`  chi `chi`  psi `psi`  omega `omega`


Uppercase Greek Letters


Gamma `Gamma`  Delta `Delta`  Theta `Theta`   Lambda `Lambda`  Xi `Xi`  Pi `Pi`   Sigma `Sigma`  Phi `Phi`  Psi `Psi`  Omega `Omega`